
ncas_amof_netcdf_template
Release 2.4.0

Joshua M. Hampton

Feb 26, 2024

GETTING STARTED

1 Installation 3

2 How to use 5

3 Metadata File Formats 11

4 API 13

5 History and Deprecations 17

6 Suggestions and Further Help 19

Python Module Index 21

Index 23

i

ii

ncas_amof_netcdf_template, Release 2.4.0

ncas_amof_netcdf_template is a Python module to help NCAS instrument scientists create netCDF files that meet the
NCAS-GENERAL netCDF metadata standard, starting with version 2.0 of the standard. This standard is based on
version 1.6 of the CF metadata conventions, with additional information required regarding the instrument used and
the state of its deployment.

GETTING STARTED 1

https://ncas.ac.uk/
https://sites.google.com/ncas.ac.uk/ncasobservations/home/data-project/ncas-data-standards/ncas-amof
https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html

ncas_amof_netcdf_template, Release 2.4.0

2 GETTING STARTED

CHAPTER

ONE

INSTALLATION

1.1 Conda

The latest release version of the module, along with any dependencies, can be downloaded and installed using conda:

conda install -c conda-forge ncas-amof-netcdf-template

1.2 Pip

The latest release version is also availalbe through pip:

pip install ncas-amof-netcdf-template

1.3 GitHub

Alternatively, the latest version of the module can be downloaded from GitHub:

git clone https://github.com/joshua-hampton/ncas_amof_netcdf_template.git
cd ncas_amof_netcdf_template
pip install .

Previous release versions can also be found through GitHub.

3

https://docs.conda.io/en/latest/
https://pypi.org/
https://github.com/joshua-hampton/ncas_amof_netcdf_template

ncas_amof_netcdf_template, Release 2.4.0

4 Chapter 1. Installation

CHAPTER

TWO

HOW TO USE

Unless otherwise stated, all examples will use the ncas-ceilometer-3 instrument as an example.

2.1 Create netCDF file

In its very simplest form:

import ncas_amof_netcdf_template as nant
ncs = nant.create_netcdf.main('ncas-ceilometer-3')

This will create a netCDF file with today’s date for all data products availalbe for the given instrument. If files for
multiple products are made, the returned object will be a list containing all objects; if only a single file then just that
netCDF file object is returned.

A netCDF file can also be created for a specific data product, rather than by a specific instrument.

nc = nant.create_netcdf.make_product_netcdf('surface-met', 'my-home-weather-station')

The file created in this example uses the surface-met data product definition, and requires the instrument name
my-home-weather-station for the file name.

2.1.1 Dimensions

Dimension sizes need to be defined when creating a netCDF file. Dimension lengths can be provided to the
create_netcdf.main function as a dictionary:

ncs = nant.create_netcdf.main('ncas-ceilometer-3', dimension_lengths = {'time':96,
→˓'altitude':45, 'layer_index':4})

If dimensions aren’t given, Python asks for the dimension lengths to be given:

ncs = nant.create_netcdf.main('ncas-ceilometer-3')
Enter length for dimension time: 96
Enter length for dimension altitude: 45
Enter length for dimension layer_index: 4

5

ncas_amof_netcdf_template, Release 2.4.0

2.1.2 Platform

The deployment platform, where the instrument was located while measuring data, is recorded in both the file name
and as a global attribute. The platform names are controlled by CEDA. NCAS instruments that are primarily based at
an NCAS observatory have the relevant platform associated with the instrument, but mobile instruments have the
phrase “mobile” listed as the default platform, which needs to be changed. Both the create_netcdf.main and
create_netcdf.make_product_netcdf functions can take a platform argument, which sets or overrides the plat-
form name to use:

nc = nant.create_netcdf.main("ncas-ceilometer-3", platform = "cao")

2.1.3 Date

The file-naming convention for the NCAS-GENERAL standard includes the date, and sometimes time, which the data
within the file represents. By default, today’s date will be used in the file name. This behaviour can be overridden by
giving the date to the create_netcdf.main function:

ncs = nant.create_netcdf.main('ncas-ceilometer-3', date='20220214')

2.1.4 Data Products

List available data products for an instrument:

nant.create_netcdf.list_products('ncas-ceilometer-3')

Alternatively, all possible data products can be listed if no instrument name is given.

A data product can be defined in the call to create the netCDF file:

nc = nant.create_netcdf.main('ncas-ceilometer-3', products = 'aerosol-backscatter')

Or multiple products can be defined by using a list:

ncs = nant.create_netcdf.main('ncas-ceilometer-3', products = ['cloud-base','cloud-
→˓coverage'])

2.1.5 Deployment Modes

NCAS instruments can be deployed in one of four deployment modes - land, sea, air, or trajectory. Each of these modes
requires different dimensions and variables, and the deployment mode is recorded as a global attribute in the netCDF
file. The default deployment mode is 'land'; however, an alternative deployment mode can be selected using the loc
keyword:

ncs = nant.create_netcdf.main('ncas-ceilometer-3', loc = 'sea')

6 Chapter 2. How to use

https://sites.google.com/ncas.ac.uk/ncasobservations/home/data-project/ncas-data-standards/ncas-amof/file-naming

ncas_amof_netcdf_template, Release 2.4.0

2.1.6 Output Location

The netCDF file will be written to the current working directory by default. To specify an alternative location, the
'file_location' keyword can be used:

ncs = nant.create_netcdf.main('ncas-ceilometer-3', file_location = '/path/to/save/
→˓location')

2.1.7 Offline Use

The information needed to create these netCDF files are stored in the AMF_CVs GitHub repository, and this package
reads data from this repository when it is used. If the package will need to be used offline, the tsv product-definitions
folder should be downloaded onto the computer, and the option use_local_files can be passed to functions such as
create_netcdf.main with the path to the product definitions as the argument.

2.1.8 Other Options

All available options for this function can be found on this API page.

2.2 Add Data

After the netCDF file is created, the file then needs to be opened in append mode, and data can then be added to the
file:

import ncas_amof_netcdf_template as nant
from netCDF4 import Dataset

Read raw data into python
...
backscatter_data = ...

nc = nant.create_netcdf.main('ncas-ceilometer-3', date='20221117', product = 'aerosol-
→˓backscatter')

nant.util.update_variable(nc, 'attenuated_aerosol_backscatter_coefficient', backscatter_
→˓data)

where 'attenuated_aerosol_backscatter_coefficient' is the name of the variable in the netCDF file, and
'backscatter_data' is an array containing the data. This will also update the valid_min and valid_max attributes
for each variable where applicable.

2.2. Add Data 7

https://github.com/ncasuk/AMF_CVs
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
create_netcdf.html#ncas_amof_netcdf_template.create_netcdf.main

ncas_amof_netcdf_template, Release 2.4.0

2.2.1 Quality Control Flag Data

Quality control flags in the NCAS-GENERAL standard use flag_values and flag_meanings to convey the quality of the
data. When adding data to a quality control variable, an error is raised if that data includes values not in the flag_values
attribute.

2.3 Time

netCDF files that follow the NCAS-GENERAL metadata standard require a number of variables that correspond to
time, or a portion of it, including (but not limited to) UNIX time, year, month and day. This module includes a function
that will take a list of datetime objects and return the times in all the required formats.

import ncas_amof_netcdf_template as nant
import datetime as dt

generate some times for this example
t1 = dt.datetime.strptime('20221117T120000','%Y%m%dT%H%M%S')
t2 = dt.datetime.strptime('20221117T120500','%Y%m%dT%H%M%S')
times = [t1,t2]

unix_times, day_of_year, years, months, days, hours, minutes, seconds, \
time_coverage_start_unix, time_coverage_end_unix, file_date = nant.util.get_

→˓times(times)

This returns 8 lists with the time formatted as needed for variables in the netCDF file, as well as the first and last UNIX
time stamp which can be used for the time coverage start and end metadata fields, and the date/time with the correct
precision which, if required, could be used for the date in the create_netcdf.main function (e.g. in the example
above it would return '20221117-12').

2.4 Metadata

While all required metadata fields are added to the global attributes of the netCDF file, and in some cases the defined val-
ues are directly inserted, it is necessary to add further metadata values to the netCDF file, for example creator_name.
Fields that need metadata adding to them are initially given placeholder text which starts with the word “CHANGE” -
simple interrogation of the created netCDF file will reveal which attributes need specifying.

The contents of a CSV file containing metadata can then be added to the netCDF file

nant.util.add_metadata_to_netcdf(nc, 'metadata.csv')

Metadata can be supplied in CSV, JSON, YAML or XML formats; see the metadata formats page for more details.
The add_metadata_to_netcdf function will attempt to detect the format type based on the file extension. If this
detection fails, the file_format argument can be used, e.g.

nant.util.add_metadata_to_netcdf(nc, 'metadata_file', file_format = 'csv')

If detection fails and file_format is not given, the function will attempt to read the file as a CSV.

One additional parameters can be supplied in the metadata file with each individual attributes:

• type - what data type the value of the attribute should take, e.g. integer or string. Default if absent is
string.

8 Chapter 2. How to use

util.html#ncas_amof_netcdf_template.util.get_times
https://docs.python.org/3/library/datetime.html
metadata-formats.html

ncas_amof_netcdf_template, Release 2.4.0

2.4.1 Latitude, Longitude, and Geospatial Bounds

Although latitude and longitude are variables in the netCDF file, single value latitude and longitude values, with units
“degrees North” and “degrees East” respectively can be included in the metadata file, for example if using a CSV
meatadata file

latitude,53.801277
longitude,-1.548567

The geospatial_bounds global attribute can also be defined directly in the metadata file, or calculated from the
latitude and longitude values:

nant.util.add_metadata_to_netcdf(nc, 'metadata.csv')
geobounds = f"{ncfile.variables['latitude'][0]}N, {ncfile.variables['longitude'][0]}E"
nc.setncattr('geospatial_bounds', geobounds)

2.4.2 Time Coverage Start and End

As mentioned above, the time_coverage_start and time_coverage_end global attribute values can be obtained
using the get_times function. The returns from this function include the first and last times as UNIX time stamps, which
can be converted into the correct format for the global attribute values:

dt.datetime.fromtimestamp(time_coverage_start_unix, dt.timezone.utc).strftime("%Y-%m-%dT
→˓%H:%M:%S")

2.5 Remove Empty Variables

The NCAS-GENERAL metadata standard can be seen as two parts: the first being “common” attributes, di-
mensions and variables that are required in all files, the second is “product-specific” information, for exam-
ple the aerosol-backscatter product has variables attenuated_aerosol_backscatter_coefficient and
range_squared_corrected_backscatter_power which are not in the cloud-base product. However, there may
be cases where the instrument does not measure one or more of these product-specific variables. These empty product-
specific variables should not be included in the final netCDF file.

nant.remove_empty_variables.main('./ncas-ceilometer-3_iao_20221117_aerosol-backscatter_
→˓v1.0.nc')

The netCDF file needs to be closed before this can be done, using nc.close().

2.6 Full Example

An example of a full work flow using ncas_amof_netcdf_template to create the netCDF file, where is is assumed
the actual reading of the raw data is handled by a function called read_data_from_raw_files, and metadata is stored
in a file called metadata.csv.

import ncas_amof_netcdf_template as nant
import datetime as dt
from netCDF4 import Dataset

(continues on next page)

2.5. Remove Empty Variables 9

util.html#ncas_amof_netcdf_template.util.get_times

ncas_amof_netcdf_template, Release 2.4.0

(continued from previous page)

Read the raw data with user-written function, with times returning data in datetime␣
→˓format
In this example, `time` and `altitude` are the only dimensions
backscatter_data, times, altitudes, other variables = read_data_from_raw_files()

Get all the time formats
unix_times, day_of_year, years, months, days, hours, minutes, seconds, \
time_coverage_start_unix, time_coverage_end_unix, file_date = nant.util.get_

→˓times(times)

Create netCDF file and read it back into the script in append mode
nc = nant.create_netcdf.main('ncas-ceilometer-3', date = file_date,

dimension_lengths = {'time':len(times), 'altitude
→˓':len(altitudes)},

loc = 'land', products = 'aerosol-backscatter',
file_location = ncfile_location)

Add variable data to netCDF file
nant.util.update_variable(nc, 'altitude', altitudes)
nant.util.update_variable(nc, 'attenuated_aerosol_backscatter_coefficient',

backscatter_data)
nant.util.update_variable(nc, 'time', unix_times)
nant.util.update_variable(nc, 'day_of_year', day_of_year)
nant.util.update_variable(nc, 'year', years)
and so on for each time format

Add metadata from file
nant.util.add_metadata_to_netcdf(nc, 'metadata.csv')

Add time_coverage_start and time_coverage_end metadata using data from get_times
nc.setncattr('time_coverage_start',

dt.datetime.fromtimestamp(time_coverage_start_unix, dt.timezone.utc).
→˓strftime("%Y-%m-%dT%H:%M:%S"))
nc.setncattr('time_coverage_end',

dt.datetime.fromtimestamp(time_coverage_end_unix, dt.timezone.utc).strftime(
→˓"%Y-%m-%dT%H:%M:%S"))

Look to see if latitude and longitude values have been added, and
geospatial_bounds NOT added, through the metadata file
lat_masked = nc.variables['latitude'][0].mask
lon_masked = nc.variables['longitude'][0].mask
geospatial_attr_changed = "CHANGE" in nc.getncattr('geospatial_bounds')
if geospatial_attr_changed and not lat_masked and not lon_masked:

geobounds = f"{nc.variables['latitude'][0]}N, {nc.variables['longitude'][0]}E"
nc.setncattr('geospatial_bounds', geobounds)

Close file
nc.close()

Check for empty variables and remove if necessary
nant.remove_empty_variables.main(f'{ncfile_location}/ncas-ceilometer-3_iao_{file_date}_
→˓aerosol-backscatter_v1.0.nc')

10 Chapter 2. How to use

CHAPTER

THREE

METADATA FILE FORMATS

Metadata can be provided in one (or more if so desired) of four different formats - CSV, JSON, YAML and XML. This
page describes the required layout of each of these formats.

3.1 CSV

Metadata in CSV files must be formatted with one attribute per line, starting with the name of the attribute, followed
by its value (which can have commas in it), optionally followed by type=, for example:

attribute_name1,attribute_value1
attribute_name2,153,type=integer
attribute_name3,attribute_value3, value3 continued, type=string

This will write to three attributes into the netCDF file:

• attribute_name1 will be written with the value attribute_value1.

• attribute_name2 will be written with the value 153 as an integer.

• attribute_name3 will be written with the value attribute_value3, value3 continued as a string.

3.2 JSON

The following example will produce the same end result as above:

{
"attribute_name1": "attribute_value1",
"attribute_name2": {

"value": 153,
"type": "int"

},
"attribute_name3": {

"value": "attribute_value3, value3 continued",
"type": "string"

}
}

In the JSON format, if the value given to the attribute name is a single value (as in attribute_name1), then that
will be the attributes value, with the default options for type applied. If the value given is a dictionary (as in
attribute_name2 and attribute_name3, then it must have a key value for the value of the attribute, and can
optionally have type given.

11

ncas_amof_netcdf_template, Release 2.4.0

3.3 YAML

The same information as shown in the previous examples can be given in a YAML file:

attribute_name1: attribute_value1
attribute_name2:
value: 153
type: int

attribute_name3:
value: attribute_value3, value3 continued
type: string

3.4 XML

These metadata can also be given in an XML file:

<?xml version="1.0" encoding="UTF-8"?>
<attributes>

<attribute_name1>
<value>attribute_value1</value>

</attribute_name1>
<attribute_name2>

<value>153</value>
<type>integer</type>

</attribute_name2>
<attribute_name3>

<value>attribute_value3, value3 continued</value>
<type>string</value>

</attribute_name3>
</attributes>

12 Chapter 3. Metadata File Formats

CHAPTER

FOUR

API

ncas_amof_netcdf_template.create_netcdf Create netCDF files for NCAS AMOF instruments that
adhere to the NCAS-AMF-2.0.0 standard.

ncas_amof_netcdf_template.
remove_empty_variables

Functions for removal of empty product-specific vari-
ables.

ncas_amof_netcdf_template.tsv2dict Take tsv files and return data as dictionaries useful for
creating netCDF files.

ncas_amof_netcdf_template.util Reasonably helpful functions that can be often used.
ncas_amof_netcdf_template.values Get various URLs from AMF_CVs GitHub repo for vo-

cab releases.

4.1 ncas_amof_netcdf_template.create_netcdf

Create netCDF files for NCAS AMOF instruments that adhere to the NCAS-AMF-2.0.0 standard.

Functions

add_attributes(ncfile, instrument_dict, ...) Adds all global attributes for a given product to the
netCDF file.

add_dimensions(ncfile, instrument_dict, ...) Adds all dimensions for a given product to the netCDF
file.

add_variables(ncfile, instrument_dict, product) Adds all variables and their attributes for a given product
to the netCDF file.

list_products([instrument, use_local_files, tag]) Lists available products, either for a specific instrument
or all data products.

main(instrument[, date, dimension_lengths, ...]) Create 'just-add-data' AMOF-compliant netCDF file
make_netcdf(instrument, product, time, ...) Makes netCDF file for given instrument and arguments.
make_product_netcdf(product, instrument_name) Create an AMOF-like netCDF file for a given data prod-

uct.

13

ncas_amof_netcdf_template, Release 2.4.0

4.2 ncas_amof_netcdf_template.remove_empty_variables

Functions for removal of empty product-specific variables. As a variable cannot be removed from a netCDF file, a new
file has to be created, with the option of removing the old one.

Functions

get_json_from_github(url) Returns desired json file from https://github.com/
ncasuk/AMF_CVs/tree/main/AMF_CVs URL should
be in form https://raw.githubusercontent.com/ncasuk/
AMF_CVs/main/AMF_CVs/___.json, otherwise a
JSONDecodeError will be returned by the r.json() call

get_product_variables_metadata(product[, ...]) Get variables and their metadata associated with a prod-
uct.

main(infile[, outfile, overwrite, verbose]) If a product-specific variable is empty, we want to re-
move it.

4.3 ncas_amof_netcdf_template.tsv2dict

Take tsv files and return data as dictionaries useful for creating netCDF files.

14 Chapter 4. API

https://github.com/ncasuk/AMF_CVs/tree/main/AMF_CVs
https://github.com/ncasuk/AMF_CVs/tree/main/AMF_CVs
https://raw.githubusercontent.com/ncasuk/AMF_CVs/main/AMF_CVs/___.json
https://raw.githubusercontent.com/ncasuk/AMF_CVs/main/AMF_CVs/___.json

ncas_amof_netcdf_template, Release 2.4.0

Functions

create_attributes_tsv_url(product[, ...]) Returns URL for tsv file of global attributes specific to a
given product and tag release or branch.

create_dimensions_tsv_url(product[, ...]) Returns URL for tsv file of dimensions specific to a given
product and tag release or branch.

create_variables_tsv_url(product[, ...]) Returns URL for tsv file of variables specific to a given
product and tag release or branch.

instrument_dict(desired_instrument[, loc, ...]) Collect all variables, dimensions and attributes required
for all data products associated with an instrument and
deployment mode.

list_all_products([use_local_files, tag]) Return list of all available data products.
product_dict(desired_product[, platform, ...]) Collect all variables, dimensions and attributes required

for a data products and deployment mode.
tsv2dict_attrs(tsv_file) For a given tsv file from https://github.com/ncasuk/

AMF_CVs/tree/main/product-definitions/tsv for data
global attributes, return dictionary of attributes and as-
sociated values and info.

tsv2dict_dims(tsv_file) For a given tsv file from https://github.com/ncasuk/
AMF_CVs/tree/main/product-definitions/tsv for data
dimensions, return dictionary of dimensions and addi-
tional info.

tsv2dict_instruments(tsv_file) For a given tsv file from https://github.com/ncasuk/
AMF_CVs/tree/main/product-definitions/tsv for ncas-
or community-instruments, return dictionary of instru-
ments and associated information.

tsv2dict_vars(tsv_file) For a given tsv file from https://github.com/ncasuk/
AMF_CVs/tree/main/product-definitions/tsv for data
variables, return dictionary of variables and their at-
tributes.

4.4 ncas_amof_netcdf_template.util

Reasonably helpful functions that can be often used.

4.4. ncas_amof_netcdf_template.util 15

https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv
https://github.com/ncasuk/AMF_CVs/tree/main/product-definitions/tsv

ncas_amof_netcdf_template, Release 2.4.0

Functions

add_metadata_to_netcdf(ncfile[, metadata_file]) Reads metadata from csv file using get_metadata, adds
values to global attributes in netCDF file.

check_float(value) Returns True if value can be converted to float, otherwise
returns False.

check_int(value) Returns True if value can be converted to integer, other-
wise returns False.

check_type_convert(value, dtype) Returns True if value can be converted to type dtype,
otherwise returns False.

get_metadata(metafile) Returns a dict from of metadata from file.
get_times(dt_times) Returns all time units for AMOF netCDF files from se-

ries of datetime objects.
read_csv_metadata(metafile) Returns a dict from a csv with metadata.
read_json_metadata(metafile) Returns a dict from a JSON with metadata.
read_xml_metadata(metafile) Returns a dict from a XML with metadata.
read_yaml_metadata(metafile) Returns a dict from a YAML with metadata.
update_variable(ncfile, ncfile_varname, data) Adds data to variable, and updates valid_min and

valid_max
zero_pad_number(n) Returns single digit number n as '0n' Returns multiple

digit number n as 'n' Used for date or month strings

4.5 ncas_amof_netcdf_template.values

Get various URLs from AMF_CVs GitHub repo for vocab releases.

Functions

get_all_data_products_url([use_local_files, tag]) Return URL to TSV file of data products.
get_common_attributes_url([use_local_files, tag]) Return URL to TSV file of common global attributes.
get_common_dimensions_url([loc, ...]) Return URL to TSV file of common dimensions.
get_common_variables_url([loc, ...]) Return URL to TSV file of common variables.
get_community_instruments_url([...]) Return URL to TSV file of community instruments.
get_instruments_url([use_local_files, tag]) Return URL to TSV file of AMOF instruments.
get_latest_CVs_version() Get latest release version of AMF_CVs

16 Chapter 4. API

CHAPTER

FIVE

HISTORY AND DEPRECATIONS

5.1 Revision History

Important changes of note with each release:

5.1.1 2.4.0

• Added option to overwrite platform used in file name and global attribute - platform attribute to
create_netcdf.main and create_netcdf.make_product_netcdf.

• Deprecating use of instrument_loc in tsv2dict.product_dict and create_netcdf.
make_product_netcdf - use platform instead. instrument_loc will be removed in version 2.6.0.

• Added options for metadata files in different file formats, including the option to specify the data type of the
value of the attribute - this supercedes the update to numbers in metadata in version 2.3.2.

• Updated default for return_open argument to True (see revision in version 2.3.0 for more information).

5.1.2 2.3.2

• Corrected how microseconds were being treated by util.get_times

• Numbers in metadata can be neatly added as strings to global attributes by surrounding them with single quotes,
for example ‘1.2’ in the metadata CSV file. Numbers not surrounded by single quotes are still treated as integers
or floats.

5.1.3 2.3.1

• Added package version number to text in the history global attribute.

• util.get_times returns day_of_year as a list rather than an array, in line with other times returned.

17

ncas_amof_netcdf_template, Release 2.4.0

5.1.4 2.3.0

• Dropped support for Python 3.7, added support for Python 3.12

• Added History and Deprecations page to documentation.

• Error raised (with option for warning instead) when using util.update_variable to add data to Quality
Control variable if that data includes values not in the flag_values variable attribute.

• Added deprecation to create_netcdf.main, create_netcdf.make_netcdf, and create_netcdf.
make_product_netcdf, for closing the netCDF file after initial creation and population. As of version 2.5.0,
these functions will all return an open netCDF file, or a list containing open netCDF files in the case of the
function creating multiple files, e.g. multiple data products. This behaviour can be used from version 2.3.0 by
passing return_open=True to these functions. As of version 2.4.0, return_open=True will be the default
option, with the previous behaviour available by passing return_open=False. In version 2.5.0, the behaviour
of return_open=False will be removed.

• Added option to use locally saved tsv files rather than reading from GitHub.

5.2 Deprecation Policy

Through the life of software, it is very likely parts of the package will have to be changed and altered in such a way
the user will have to make small changes to their work in order to keep up with changes in the software. While these
deprecations are kept to a minimum, they cannot be altogether avoided. This policy states how this package aims to
deal with changes and deprecation of code.

If something in the package is to be deprecated and replaced:

1. A DeprecationWarning must be raised when the code that will be removed will be executed, which must
mention in which version of the package that thing will no longer work or be available. That version must be at
least 2 minor versions later (i.e. code that raises a deprecation warning added in 2.3.x cannot be removed until
2.5.0 at the earliest).

2. If possible, a way of using the new code should be made available simultaneously. In this case, the deprecation
warning must include information to the user on how to use the new code. If this is not possible, the deprecation
warning should last for at least 3 minor versions (i.e. if first raised in 2.3.x, it should not be removed until 2.6.0),
with beta versions of the package published with the new code.

3. If the change in the code can be contained within a boolean argument to a function, then that argument must
default to the original code when the deprecation warning is first added, and removed in the version of the package
where the code is deprecated, but it is allowed to change the default option to the new code in an intermediate
release while the old version of the code is still available within the function. This change of default option must
happen in the next minor version release at the earliest, with the code removed at least one further minor release
later (i.e. if a deprecation is added in 2.3.x and is covered by a boolean argument, in 2.3.x that boolean argument
must default to the original code, in 2.4.x it can default to original or new, and then the argument and original
code can be removed from 2.5.0). If this default option is changed before the deprecated code is removed, this
must be mentioned in the deprecation warning before the change happens (i.e. in the example above, in version
2.3.x), and in the deprecation warning afterwards (i.e. in 2.4.x) it must state how to use the original code.

4. Deprecations must be added to the documentation, including what is being deprecated, which version the depre-
cation warning was first introduced, in which version the original code will be removed, and all information on
how to use both original and new versions of the code in the intervening releases.

5. All references to minor release versions must be superseded by a major release version, for example if a depre-
cation warning introduced in 2.3.x states something will be removed in 2.5.0, then that thing must be removed
in 3.0.0, even if it comes out before 2.5.0 (which presumably would then not be published).

18 Chapter 5. History and Deprecations

CHAPTER

SIX

SUGGESTIONS AND FURTHER HELP

6.1 Code layout

ncas-ceilometer-3-software is an example of this module in use for creating NCAS-GENERAL netCDF files. There
are four main components to this repo:

1. read_ceilometer.py - this script contains functions to read the raw data files from the instrument and returns
all of the variables and data in a Python-friendly format.

2. process_ceilometer.py - this uses the functions in read_ceilometer.py to read the raw data, and uses the
functions from this module to actually create the netCDF file.

3. metadata.csv - CSV file which has relevant metadata for this instrument, used as described here.

4. scripts - folder that contains Bash scripts that can be called in a crontab/scheduler to automatically create
netCDF files on a regular basis.

6.2 Problems?

The best way to get help is through issues on GitHub. Here you’ll be able to see if anyone else has had the same
problem, and any fixes or solutions that may have been found, or raise an issue to highlight a new problem.

If you find a problem and also work out a solution to the issue, feel free to fork the GitHub repo and create a pull request
with your solution. This will then be reviewed before being accepted into a future release.

19

https://github.com/ncasuk/ncas-ceilometer-3-software
usage.html#metadata
https://github.com/joshua-hampton/ncas_amof_netcdf_template/issues
https://github.com/joshua-hampton/ncas_amof_netcdf_template/pulls

ncas_amof_netcdf_template, Release 2.4.0

20 Chapter 6. Suggestions and Further Help

PYTHON MODULE INDEX

n
ncas_amof_netcdf_template.create_netcdf, ??
ncas_amof_netcdf_template.remove_empty_variables,

??
ncas_amof_netcdf_template.tsv2dict, ??
ncas_amof_netcdf_template.util, ??
ncas_amof_netcdf_template.values, ??

21

ncas_amof_netcdf_template, Release 2.4.0

22 Python Module Index

INDEX

M
module

ncas_amof_netcdf_template.create_netcdf,
13

ncas_amof_netcdf_template.remove_empty_variables,
14

ncas_amof_netcdf_template.tsv2dict, 14
ncas_amof_netcdf_template.util, 15
ncas_amof_netcdf_template.values, 16

N
ncas_amof_netcdf_template.create_netcdf

module, 13
ncas_amof_netcdf_template.remove_empty_variables

module, 14
ncas_amof_netcdf_template.tsv2dict

module, 14
ncas_amof_netcdf_template.util

module, 15
ncas_amof_netcdf_template.values

module, 16

23

	Installation
	Conda
	Pip
	GitHub

	How to use
	Create netCDF file
	Dimensions
	Platform
	Date
	Data Products
	Deployment Modes
	Output Location
	Offline Use
	Other Options

	Add Data
	Quality Control Flag Data

	Time
	Metadata
	Latitude, Longitude, and Geospatial Bounds
	Time Coverage Start and End

	Remove Empty Variables
	Full Example

	Metadata File Formats
	CSV
	JSON
	YAML
	XML

	API
	ncas_amof_netcdf_template.create_netcdf
	ncas_amof_netcdf_template.remove_empty_variables
	ncas_amof_netcdf_template.tsv2dict
	ncas_amof_netcdf_template.util
	ncas_amof_netcdf_template.values

	History and Deprecations
	Revision History
	2.4.0
	2.3.2
	2.3.1
	2.3.0

	Deprecation Policy

	Suggestions and Further Help
	Code layout
	Problems?

	Python Module Index
	Index

